2,440 research outputs found

    Exploring structure and function of sensory cortex with 7 T MRI

    Get PDF
    In this paper, we present an overview of 7 Tesla magnetic resonance imaging (MRI) studies of the detailed function and anatomy of sensory areas of the human brain. We discuss the motivation for the studies, with particular emphasis on increasing the spatial resolution of functional MRI (fMRI) using reduced field-of-view (FOV) data acquisitions. MRI at ultra-high-field (UHF) – defined here as 7 T and above – has several advantages over lower field strengths. The intrinsic signal-to-noise ratio (SNR) of images is higher at UHF, and coupled with the increased blood-oxygen-level-dependent (BOLD) signal change, this results in increased BOLD contrast-to-noise ratio (CNR), which can be exploited to improve spatial resolution or detect weaker signals. Additionally, the BOLD signal from the intra-vascular (IV) compartment is relatively diminished compared to lower field strengths. Together, these properties make 7 T functional MRI an attractive proposition for high spatial specificity measures. But with the advantages come some challenges. For example, increased vulnerability to susceptibility-induced geometric distortions and signal loss in EPI acquisitions tend to be much larger. Some of these technical issues can be addressed with currently available tools and will be discussed. We highlight the key methodological considerations for high resolution functional and structural imaging at 7 T. We then present recent data using the high spatial resolution available at UHF in studies of the visual and somatosensory cortex to highlight promising developments in this area

    Calibrated BOLD using direct measurement of changes in venous oxygenation

    Get PDF
    Calibration of the BOLD signal is potentially of great value in providing a closer measure of the underlying changes in brain function related to neuronal activity than the BOLD signal alone, but current approaches rely on an assumed relationship between cerebral blood volume (CBV) and cerebral blood flow (CBF). This is poorly characterised in humans and does not reflect the predominantly venous nature of BOLD contrast, whilst this relationship may vary across brain regions and depend on the structure of the local vascular bed. This work demonstrates a new approach to BOLD calibration which does not require an assumption about the relationship between cerebral blood volume and cerebral blood flow. This method involves repeating the same stimulus both at normoxia and hyperoxia, using hyperoxic BOLD contrast to estimate the relative changes in venous blood oxygenation and venous CBV. To do this the effect of hyperoxia on venous blood oxygenation has to be calculated, which requires an estimate of basal oxygen extraction fraction, and this can be estimated from the phase as an alternative to using a literature estimate. Additional measurement of the relative change in CBF, combined with the blood oxygenation change can be used to calculate the relative change in CMRO2 due to the stimulus. CMRO2 changes of 18 ± 8% in response to a motor task were measured without requiring the assumption of a CBV/CBF coupling relationship, and are in agreement with previous approaches

    The psychological-type profile of clergywomen in ordained local ministry in the Church of England : pioneers or custodians?

    Get PDF
    This study employs psychological-type theory to compare the psychological profile of 144 clergywomen serving in ordained local ministry in the Church of England alongside the established profile of 237 professional mobile clergywomen serving in the Church of England published by Francis, Craig, Whinney, Tilley, and Slater. The data found no significant differences between these two groups of clergywomen in terms of orientations (introversion and extraversion) or in terms of the judging process (thinking and feeling). In terms of the perceiving process, there was a significantly higher proportion of sensing types among those serving in ordained local ministry (70% compared with 35%). In terms of the attitudes, there was a significantly higher proportion of judging types among those serving in ordained local ministry (83% compared with 65%). The combined sensing judging (SJ) temperament accounted for 65% of the clergywomen serving in ordained local ministry, compared with 29% of the clergywomen serving in professional mobile ministry in the earlier study. It is argued that the SJ temperament characterises a custodian style of ministry

    7 tesla FMRI reveals systematic functional organization for binocular disparity in dorsal visual cortex.

    Get PDF
    The binocular disparity between the views of the world registered by the left and right eyes provides a powerful signal about the depth structure of the environment. Despite increasing knowledge of the cortical areas that process disparity from animal models, comparatively little is known about the local architecture of stereoscopic processing in the human brain. Here, we take advantage of the high spatial specificity and image contrast offered by 7 tesla fMRI to test for systematic organization of disparity representations in the human brain. Participants viewed random dot stereogram stimuli depicting different depth positions while we recorded fMRI responses from dorsomedial visual cortex. We repeated measurements across three separate imaging sessions. Using a series of computational modeling approaches, we report three main advances in understanding disparity organization in the human brain. First, we show that disparity preferences are clustered and that this organization persists across imaging sessions, particularly in area V3A. Second, we observe differences between the local distribution of voxel responses in early and dorsomedial visual areas, suggesting different cortical organization. Third, using modeling of voxel responses, we show that higher dorsal areas (V3A, V3B/KO) have properties that are characteristic of human depth judgments: a simple model that uses tuning parameters estimated from fMRI data captures known variations in human psychophysical performance. Together, these findings indicate that human dorsal visual cortex contains selective cortical structures for disparity that may support the neural computations that underlie depth perception.This work wassupported by the European Community’s Seventh Framework Programme FP7/2007-2013 (Grant PITN-GA- 2011-290011), the Japan Society for the Promotion of Science (JSPS KAKENHI Grant 26870911), and the Wellcome Trust (Grant 095183/Z/10/Z).This is the final version of the article. It was originally published in the Journal of Neuroscience, 18 February 2015, 35(7): 3056-3072; doi: 10.1523/JNEUROSCI.3047-14.2015

    Multi-centre, multi-vendor reproducibility of 7T QSM and R2* in the human brain: Results from the UK7T study

    Get PDF
    Introduction We present the reliability of ultra-high field T2* MRI at 7T, as part of the UK7T Network's “Travelling Heads” study. T2*-weighted MRI images can be processed to produce quantitative susceptibility maps (QSM) and R2* maps. These reflect iron and myelin concentrations, which are altered in many pathophysiological processes. The relaxation parameters of human brain tissue are such that R2* mapping and QSM show particularly strong gains in contrast-to-noise ratio at ultra-high field (7T) vs clinical field strengths (1.5–3T). We aimed to determine the inter-subject and inter-site reproducibility of QSM and R2* mapping at 7T, in readiness for future multi-site clinical studies. Methods Ten healthy volunteers were scanned with harmonised single- and multi-echo T2*-weighted gradient echo pulse sequences. Participants were scanned five times at each “home” site and once at each of four other sites. The five sites had 1× Philips, 2× Siemens Magnetom, and 2× Siemens Terra scanners. QSM and R2* maps were computed with the Multi-Scale Dipole Inversion (MSDI) algorithm (https://github.com/fil-physics/Publication-Code). Results were assessed in relevant subcortical and cortical regions of interest (ROIs) defined manually or by the MNI152 standard space. Results and Discussion Mean susceptibility (χ) and R2* values agreed broadly with literature values in all ROIs. The inter-site within-subject standard deviation was 0.001–0.005 ppm (χ) and 0.0005–0.001 ms−1 (R2*). For χ this is 2.1–4.8 fold better than 3T reports, and 1.1–3.4 fold better for R2*. The median ICC from within- and cross-site R2* data was 0.98 and 0.91, respectively. Multi-echo QSM had greater variability vs single-echo QSM especially in areas with large B0 inhomogeneity such as the inferior frontal cortex. Across sites, R2* values were more consistent than QSM in subcortical structures due to differences in B0-shimming. On a between-subject level, our measured χ and R2* cross-site variance is comparable to within-site variance in the literature, suggesting that it is reasonable to pool data across sites using our harmonised protocol. Conclusion The harmonized UK7T protocol and pipeline delivers on average a 3-fold improvement in the coefficient of reproducibility for QSM and R2* at 7T compared to previous reports of multi-site reproducibility at 3T. These protocols are ready for use in multi-site clinical studies at 7T

    The effect of isocapnic hyperoxia on neurophysiology as measured with MRI and MEG

    Get PDF
    The physiological effect of hyperoxia has been poorly characterised, with studies reporting conflicting results on the role of hyperoxia as a vasoconstrictor. It is not clear whether hyperoxia is the primary contributor to vasoconstriction or whether induced changes in CO2 that commonly accompany hyperoxia are a factor. As calibrated BOLD fMRI based on hyperoxia becomes more widely used, it is essential to understand the effects of oxygen on resting cerebral physiology. This study used a RespirActTM system to deliver a repeatable isocapnic hyperoxia stimulus to investigate the independent effect of O2 on cerebral physiology, removing any potential confounds related to altered CO2. T1-independent Phase Contrast MRI was used to demonstrate that isocapnic hyperoxia has no significant effect on carotid blood flow (normoxia 201 ± 11 ml/min, -0.3 ± 0.8 % change during hyperoxia, p = 0.8), whilst Look Locker ASL was used to demonstrate that there is no significant change in arterial cerebral blood volume (normoxia 1.3 ± 0.4 %, -0.5 ± 5 % change during hyperoxia). These are in contrast to significant changes in blood flow observed for hypercapnia (6.8 ± 1.5 %/mmHg CO2). In addition, magnetoencephalography provided a method to monitor the effect of isocapnic hyperoxia on neuronal oscillatory power. In response to hyperoxia, a significant focal decrease in oscillatory power was observed across the alpha, beta and low gamma bands in the occipital lobe, compared to a more global significant decrease on hypercapnia. This work suggests that isocapnic hyperoxia provides a more reliable stimulus than hypercapnia for calibrated BOLD, and that previous reports of vasoconstriction during hyperoxia probably reflect the effects of hyperoxia-induced changes in CO2. However, hyperoxia does induce changes in oscillatory power consistent with an increase in vigilance, but these changes are smaller than those observed under hypercapnia. The effect of this change in neural activity on calibrated BOLD using hyperoxia or combined hyperoxia and hypercapnia needs further investigation

    Global intravascular and local hyperoxia contrast phase-based blood oxygenation measurements

    Get PDF
    AbstractThe measurement of venous cerebral blood oxygenation (Yv) has potential applications in the study of patient groups where oxygen extraction and/or metabolism are compromised. It is also useful for fMRI studies to assess the stimulus-induced changes in Yv, particularly since basal Yv partially accounts for inter-subject variation in the haemodynamic response to a stimulus. A range of MRI-based methods of measuring Yv have been developed recently. Here, we use a method based on the change in phase in the MR image arising from the field perturbation caused by deoxygenated haemoglobin in veins. We build on the existing phase based approach (Method I), where Yv is measured in a large vein (such as the superior sagittal sinus) based on the field shift inside the vein with assumptions as to the vein's shape and orientation. We demonstrate two novel modifications which address limitations of this method. The first modification (Method II), maps the actual form of the vein, rather than assume a given shape and orientation. The second modification (Method III) uses the intra and perivascular phase change in response to a known change in Yv on hyperoxia to measure normoxic Yv in smaller veins. Method III can be applied to veins whose shape, size and orientation are not accurately known, thus allowing more localised measures of venous oxygenation. Results demonstrate that the use of an overly fine spatial filter caused an overestimation in Yv for Method I, whilst the measurement of Yv using Method II was less sensitive to this bias, giving Yv=0.62±0.03. Method III was applied to mapping of Yv in local veins across the brain, yielding a distribution of values with a mode of Yv=0.661±0.008

    Can the collective intentions of individual professionals within healthcare teams predict the team's performance : developing methods and theory

    Get PDF
    Background: Within implementation research, using theory-based approaches to understanding the behaviours of healthcare professionals and the quality of care that they reflect and designing interventions to change them is being promoted. However, such approaches lead to a new range of methodological and theoretical challenges pre-eminent among which are how to appropriately relate predictors of individual's behaviour to measures of the behaviour of healthcare professionals .The aim of this study was to explore the relationship between the theory of planned behaviour proximal predictors of behaviour (intention and perceived behavioural control, or PBC) and practice level behaviour. This was done in the context of two clinical behaviours – statin prescription and foot examination – in the management of patients with diabetes mellitus in primary care. Scores for the predictor variables were aggregated over healthcare professionals using four methods: simple mean of all primary care team members' intention scores; highest intention score combined with PBC of the highest intender in the team; highest intention score combined with the highest PBC score in the team; the scores (on both constructs) of the team member identified as having primary responsibility for the clinical behaviour. Methods: Scores on theory-based cognitive variables were collected by postal questionnaire survey from a sample of primary care doctors and nurses from northeast England and the Netherlands. Data on two clinical behaviours were patient reported, and collected by postal questionnaire survey. Planned analyses explored the predictive value of various aggregations of intention and PBC in explaining variance in the behavioural data. Results: Across the two countries and two behaviours, responses were received from 37 to 78% of healthcare professionals in 57 to 93% practices; 51% (UK) and 69% (Netherlands) of patients surveyed responded. None of the aggregations of cognitions predicted statin prescription. The highest intention in the team (irrespective of PBC) was a significant predictor of foot examination Conclusion: These approaches to aggregating individually-administered measures may be a methodological advance of theoretical importance. Using simple means of individual-level measures to explain team-level behaviours is neither theoretically plausible nor empirically supported; the highest intention was both predictive and plausible. In studies aiming to understand the behaviours of teams of healthcare professionals in managing chronic diseases, some sort of aggregation of measures from individuals is necessary. This is not simply a methodological point, but a necessary step in advancing the theoretical and practical understanding of the processes that lead to implementation of clinical behaviours within healthcare teams
    corecore